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Abstract

In this work we describe the implementation of a

practical mechanism for collecting and displaying trace

information in a debugger for message passing programs.
We introduce a trace format that is highly compressible

while still providing information adequate for debugging
purposes. We make the mechanism convenient for users to

access by incorporating the trace collection in a set of
wrappers for the MPI communication library. We imple-
ment several debugger operations that use the trace

display: consistent stoplines, undo, and rollback. They all
are implemented using controlled replay, which executes

at fidl speed in target processes until the appropriate

position in the computation is reached. They provide con-
venient mechanisms for getting to places in the execution
where tite fidl power of a state .based debugger can be

brought to bear on ;solating con:mun;r'atior, errors,

and visualization of program traces and a debugger-

managed replay mechanism. In this paper we make that

vision practical by

• making trace collection convenient for the user,

• greatly reducing the size of the trace data,

• making the connection between trace collection and

viewing tighter, and

• introducing new debugging operations based on the

trace display.
In the rest of this paper we describe our approach to

making trace-driven debugging practical. We begin by
discussing the requirements on the trace information and
how to make its collection convenient and efficient. In

section 3 we describe the user interface. Following that

we give an extended example. In section 5 we detail our
experie,lces with the implementation, including a discus-
sion of the space efficiency of the trace We the_ discuss
re'ated fork and draw conclusions.

Introduction

Software developers who need to debug message-

passing programs are usually forced to work at a low
level of abstraction. This is especially true when it comes
to isolating errors in the interprocess communications.
Even if a distributed debugger is available, there are

rarely any high-level features for dealing with messages.

One way to address this problem is to provide the user
with both a big picture of what has happened during

program execution and a way of using that picture to steer
the debugging session. For example, it would be a
considerable improvement for debuggers to have a space-

time diagram [7] that
• shows a timeline of the events, such as messages, that

have occurred in each process so far in the computa-
tion, and

• has a replay mechanism that is sensitive to

"breakpoints" inserted in the timeline.
Previous papers have identified the advantages of

having an abstract view of the execution history or of

having a replay mechanism available for distributed

debugging. A 1998 paper by Frumkin, Hood, and Lopez
[3] presented a clear, consistent view of high-level

message traffic debugging features based on collection

"This work was supported through NASA contracts NAS 2-14303
and DTTS59-99-D-00437/A61812D.

2 The Trace

In collecting trace data to be used during a debugging
session, there are several requirements to be met.

Information collected: There must be enough infor-
mation collected to provide the user with an abstract

picture of what has happened during the computation_ At
a minimum for message passing programs, this means a

record of each interprocess communication.
Convenience: Data acquisition must be very simple for

the user. In particular, there should be minimal changes

required of the compilation process. In addition, there
shouldn't be any differences between the program source

seen in the debugger and the one the user maintains.
Size of trace: In order to be effective, the size of the

trace must be manageable. If it is small enough, the trace
may be able to stay in memory, thus avoiding the expense

of accessing secondary storage.
Availability to trace viewer: If the debugger is going to

present an up-to-date picture of the execution so far, it
must have access to all of the trace data that has been

recorded during execution. In particular, it cannot wait
until program execution has terminated and the trace data

across all processes has been merged and put in a
canonical form. Instead, it must be able to access each

process's trace data independently--getting it out of

memory if necessary.
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It is important to note that trace timestamp accuracy is

not required. In a debugging session, the relative ordering
of events is important; knowing the exact amount of time

between two events is much less important.

2.1 Collecting Options

There are several trace collection options to be

considered with regard to these requirements.
Source-to-source instrumentation: In this approach,

instrumentation is inserted automatically at the source

level of the program, which must then be recompiled. One

problem with this is that the user's build procedure (e.g
the program's Makefile on a Unix system) must be

modified to reflect the instrumentation step. Furthermore,
the "source code" that the debugger has symbols for is not
the same one that the user wants to work with. An

additional disadvantage of this method is that the instru-
mentation points must be identified before execution.

Object code instrumentation: In this method there is a

modification step performed on an object code represen-
tation-anywhere from the assembly language level down

to a fully linked executable. With this approach we can
eliminate the problem of having multiple versions of the

source. However, we still have the problems that the build
procedure must be modified to include the object code
instrumentation pass. In addition, the inst;umentation

decisions must again be made bc'.'c,re ex_cu_iom
D?namic instrumentation: With dynar_ic insuu

men:ation, such a,, that provided by the DynTnst AP! [2],a
running executable is modified using a sophisticated

patching technique. This approach overcomes the
restriction that instrumentation decisions be made before

execution. The need to modify the user's build procedure

is also removed. The chief problem with this approach is

that the modifications made by the dynamic instrumenta-
tion are incompatible with control by a conventional
debugger such as gdb from the Free Software Foundation.

For example, the debugger has no symbol table
information for the patches that are inserted in the code

and if execution stops in a patch, the debugger will be
unable to show the user where execution has stopped.

Wrapped calls to communication libraries: In this

approach, the user's code calls a traced version of
routines from the message-passing library. In the case of

MPI [9], the profiling interface permits this to be done

without modifying the source code. From the user
convenience perspective, this approach requires only that

the link command in the build procedure be changed to
use a debugging version of the MPI library. As with the
other static instrumentation techniques, we are required to
make instrumentation decisions before execution.

For our work we chose to use an instrumented version

of the MPI library. We felt that its impact on the compila-

tion process (i.e., one small change to the build
procedure) was acceptable, since debugger users usually

need to add a compiler flag such as "-g" anyway ]. We

also felt that the flexibility provided by dynamic instru-
mentation in this case did not outweigh the problems that

its incompatibilities with gdb would cause in our proto-

type implementation.

2.2 Tracing with compressibility in mind

One of the goals of this work is to reduce the size of
the trace that is collected. An obvious strategy for size

reduction is to incorporate compression during collection.

While compressing raw trace data is a start, we also
modify the trace records to improve the potential for

compression. In particular, we want to make it possible to
have conventional string compression routines find the

patterns of events that often exist in scientific programs.
In order to make patterns apparent, we eliminate the

absolute time stamp that normally appears in each record.
While a trace without timestamps would contain all of the
causal information needed for debugging, the user is

better served with an approximation of the time of an
event. Without the approximation, there might be little

correspondence between the displayed trace and the

user's conception of what happens during execution.
It is sufficient for display purposes to approximate

ab_olt',te, tirr.estamps from the data in the trace. So in the

interesf of ,ompres':ibility, we stamp _ each tr,qce record
with al_ !ntege. approxirration or the a;.'nounl ,:f tirA._ si,uce

tb,: las¢ cecc.r4. With a suitably coarse approx2matic_, x_a-
expect to sec a E_rge number of repeated records in the,
trace. These would then be fodder for the data

compression.
For the coarse approximation of the time delta, we use

the integer part of the logarithm (base 2) of the number of
ticks (i.e., the number of time quanta as reported by some

timing source such as a system call or MPI_Wtime) since
the last record. Basically, we represent a delta D, by:

(number of bits in the binary representation of D) - 1 .

Consider the following example. In a four process
execution of a 2-D implicit flow solver using a so-called

multipartition domain decomposition strategy, the
communication pattern for process 0 has three phases

during each time step:

neighbor-exchange; X-sweep; Y-sweep

The neighbor-exchange phase generates the following
events. (The labels are for illustration purposes only.)

N1 : POST_RECV source:l

N2 : POST_RECV source=3
N3 : SEND dest=l

N4 : SEND dest=3

N5: WAIT source= 1

N6: WAIT source= 3

[computation]

I
To be truly convenient to the user, when the compiler gets a " g"'

on the link command, it should use the dcbugging version of the MPI

library.

!



where the "[computationf' indicates substantial computation.

The X-sweep phase generates:
[computation]

X1 : SEND dest=3

X2 : POST_RECV source=l

X3: WAIT source=l

[computation]
X4 : SEND dest=3

X5 : POST_RECV source=l

X6: WAIT source=l

[computation]
X7: SEND dest=3

X8 : POST_RECV source=l

X9: WAIT source= 1

[computation]
Xl0: SEND dest=l

xll : POST_RECV source=3

XI2: WAIT source=3

[computation]
X13: SEND dest=l

X14 : POST_RECV source=3

XI5: WAIT source=3

[computation]
XI6: SEND dest=l

XI7 : POST_RECV source=3

XI8: WAIT source=3

[computation]

The Y-sweep phase generates the same events as the X-

sweep, except that processes 1 and 3 are interchanged.
When these events are time-stamped with the

approximate time deltas, many of the records are likely to
be identical, such as x2=x5=x8. Not only will individual

"records be duplicated, it is also likely that Sequences of

records wil! f,.;pc_t, such as (z4-x6)=(x7-x9). With a
s,fitaidy coa'.::_e_ time _pproximat?on_ it may even b:: the
case tha't tb_ rec6rds _for an entire time step of t,Se

simu!atidn will be repeated in the next time step. Thesi.'

repetitions, at ::ny level, contribute to compressibility.
One concern that we had with using timestamp

approximations was that the errors would propagate. For
example, if several records in a row underestimated the
time delta, we could end up with a reconstructed absolute

time that bore little resemblance to the real time. A simple
adaptation of our strategy fixes this problem. Rather than

approximating the number of ticks since the absolute time
of the last trace record, we approximate the number of
ticks since the reconstructed time of the last record. With

this approach, rather than accumulating, the errors tend to

get corrected over time.

2.3 Compressing strategy

Trace records will be created by each call to the

wrapped message-passing library, and, ideally, each
record will be compressed at the time of creation to

minimize the amount of uncompressed trace data residing

in memory. This requires the use of a compression library
that supports frequent in-memory compression of

relatively small amounts of data. The Zlib compression
library [18] was chosen for its direct support of these

desirable capabilities, and for its availability on most
modern operating systems. ZIib basically allows in-

memory use of the compression algorithm and routines

used by the Free Software Foundation's gzip.
Zlib maintains internal buffers of compressed data that

are augmented with each subsequent compression call.
These buffers are not suitable for decompression and use

until a call is made to flush them, performing some final

compression/preparation steps on the buffer. Performing a
flush degrades the potential compression of the overall

data stream, so that minimizing the frequency of trace
data decompression and use by the viewer also minimizes

the compressed size of the trace.
The choice of how often to refresh the user's view of

the trace dictates the frequency of trace flushes, and thus

the degree to which the trace can be compressed.
Refreshing after each message exchange may be helpful
to the user, but is more suited to the animation features of

post-mortem trace visualizers [16]. Refreshing at each

process interruption (user defined breakpoint, step in
execution, etc.) is a much better choice, for two reasons.

• Users can dictate when the trace view is refreshed by

setting breakpoints, and in most cases this will not
involve setting a breakpoint after each message
exchange in the program being debugged. This

reduces the memory footprint of the collected trace.

• Presumably a user defining a breakpoint or
performing a _tep in executioo has a rough idea _f
what mes_a _ e×changes will _,_ke place Up to tb,,;

.. point in the exerution (r_fid:'can 'd.etermine 'm0rb.

_xa,'.'t!y fr:,m the source,..' This rcd,gces the need for a
real:time display of messaging.

The degree to which the trace cari be comi_ressed is
therefore proportional to the ratio of the number of

process interruptions over the number of wrapped
message library calls. Assuming the user utilizes the trace

viewer as a high-level debugging tool, giving a small ratio
of process interruptions to wrapped message library calls,

this proportionality allows better compression in lengthy
executions of message-intensive programs where
increased compression is desired.

3 The User Interface / The Viewer

A trace viewer that is part of a distributed debugger

must provide more functionality than one that is part of a

post-mortem performance anaIysis tool. In particular,
there must be a tight connection between the trace
collection and its viewing. There are two related aspects
to this.

• Traces being viewed may be incomplete. That is,

program execution will not yet have finished.
• The trace creation will be incremental. That is, a

partial trace will be displayed. When execution is

started and stopped again in the debugger there may
be additional records to show in the display.
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A further requirement of the trace view is that there be

a connection between the viewer and the debugger in

order to initiate replay operations. For example, it should
be possible for the user to mark a point in the space-time
display and have the debugger re-execute the program,

stopping at the indicated place in the computation.

With these goals in mind, we implemented a trace
viewer in the Portable Parallel/Distributed Debugger

(p2d2), a debugger for message-passing programs that has
been developed at the NASA Ames Research Center. In

the rest of this section, we describe that implementation.

3.1 Reading / reconstructing the trace

Each message passing process in a p2d2 debugging
session has its own address space, copy of the wrapped

message passing library, and gdb debugger process
controlling it through which p2d2 debugging commands

are issued [5]. The trace compression described in section
2.3 is performed on a per-process basis, and requires that

p2d2 obtain the trace data from each process in order to
display it to the user.

The gdb debugger process allows p2d2 to initiate
function calls in the target process while it is stopped at a

breakpoint. Functions are included in the wrapped
: message-passing library to flush the internal buffer_
...... maintaint_d by Zlib, an,'J allow p2d2 access_.o the fin;shed

_-i .... _::_ " cgi_i3rc_s_d data through furti_er gdb data retrieva!
_:.: " : co_3raands. Tiiis compressed data is then decompressed

: " : - :and pi'ocessed byp2d2 in its own addr,:ss _pace..
: P2d2 processes each trace buffer sequentially, with no

requirement on ordering, avoiding the added complexity

of collating or otherwise pre-analyzing trace buffers in
any way. Extracting the execution history from these per-

process trace buffers therefore requires that p2d2 support

incremental buildup of the execution history. Incremental
buildup places no debugger-based limitation on the use of
breakpoints in message passing programs, since process

interruptions may occur when messages are partially
complete. Thus the execution history stored by p2d2 may

contain incomplete messages--individual sends, receives
or waits without corresponding operations on the other

side of the message.

3.2 User interface operations

Once the trace has been read by the debugger, it is

displayed as a space-time diagram. Messages are

displayed as diagonal lines from the sending to the
receiving process. With this display the user can see the

whole trace or zoom in on a portion of it. If zoomed, the
trace can be panned forward or backward in time:

There are three ways to steer the debugging session
from the trace, using a form of program re-execution

where the computation is halted at an appropriate place in

the timeline. We discuss each of these mechanisms in

turn.

Stopline: The first form of controlled replay is for the
user to mark a single point in the space-time display--

indicating one moment in the computation history of a
single process. When the execution is started over, the

selected process will be halted at the marked event. The
user can specify where the other processes stop:

• either at the last event where they could possibly

affect the values in the selected process at its

stopping point, or

• at the first event where their own values might be
affected by the values in the selected process where it

is stopped.
In effect, the user is putting a breakpoint in the timeline

for one process and having the others stop as soon or as
late as possible, consistent with honoring data flow

dependences.
Undo: The second form of controlled replay has the

effect of undoing a process control operation in the
debugger. For example, if the user requested a CONTINUE

rather than a STEP, execution might proceed past a critical
point that needs to be investigated. The UNDO operation

would re-execute the program and stop at a point close-to,

• but not past, the place where executi9n was before the
CONTINUEwas mist_.kenly issued .......

Rollba:k" The third form of hon'a.viled replzy .mimics
the effect of rever_-ible execution. Tile h,'ention of this

• operation is to stop the re-_xccution one message-passing.
• event before its current point. What the user sees is that

execution has been rolled back a small amount--in effect

reversing it some.

3.3 Implementation of controlled replay

There are two aspects of the controlled replay that we

need in order to implement the operations of the previous
section:

• ensuring an equivalent execution in the case of

nondeterministic programs, and

• stopping the target processes at the right place.
In this work we have assumed that the subject program is
deterministic and have concentrated on the second issue.

In future work we will integrate a deterministic replay
scheme [12] (i.e., one that honors the event orderings

from an instrumented run) into our prototype so that we

can accommodate nondeterministic programs.
In order to stop at the right place in a re-execution in

an efficient way, we need to have the target processes
themselves determine when they should stop. To do this,

the debugger and the target processes must be in

agreement about how the timeline is labeled and each
process must be able to compute the label of its current
location on the timeline. Then, when execution is

restarted, the debugger can load the label of the desired



Figure 1: Partial history displayed by p2d2 for NPB [12] program BT. Dashed lines indicate a

message that appears to be traveling backwards in time (see discussion in Section 5.1), and bold
lines and large X's indicate events along the past and future frontier (see section 3.4). BT follows a

neighbor-exchange; X-sweep; Y-sweep; Z-sweep communication pattern for each time step, very
similar to (but not exactly the same as) the pattern described in section 2.2. Displayed is oneenUre

. _ ' " _ •time step followed by approximately half of the ne.xt. The user has chosen a concarrency p'oint in

_ ='_ , i process 3 that will stop the processes at the beg!nnlng Of the !atte_ time step, using the future
frontier. (The selected concurrency point is denoted by the arc on the left-hand side of the X on 1the

top line).

stop location on the timeline into each process and have it

proceed in the computation. When a process computes
that it is at the desired stopping point, it can force the

execution of a breakpoint trap instruction.

3.4 Calculation of the stopline frontiers

In the 1998 paper by Frumkin, Hood, and Lopez [3]
the notion of a consistent frontier was used to find a set of

events in which no event provably occurs before another.
A user could choose an event, either a message send or
receive in the displayed execution history, to be the

concurrency poh_t from which frontiers could be found.
Past and future frontiers were then displayed for events

that were guaranteed to be in the past or the future,
respectively, relative to the chosen event. These frontiers

are illustrated in the time-space display shown in Figure
1.

We have extended this capability by providing the user

with the option of viewing past and future frontiers
relative to just before or just after the event occurs.

Choosing a time in the execution history just before a
message send event displays a future frontier that includes
the receive event of that message. Choosing a time just

after the send event displays a future frontier with events

guaranteed to be in the future beyond the corresponding

receive event. The past frontier for both these examples
would be the same, though.

Choosing a time in the execution history just after a

message receive event displays a past frontier that
includes the send event of that message. Choosing a time

just before the receive event displays a past frontier with
events guaranteed to be in the past of the corresponding

send event. The future frontier for both these examples
would be the same.

4 An Example Usage Scenario

In order to illustrate how trace-driven debugging

appears to a user, consider the following scenario. The
user is experiencing problems with an MPI program that

iteratively solves for the vector X in the matrix equation
A * X = B. The program seems to hang indefinitely, with

no warning messages or errors produced by MPI.
The program breaks down into two main phases: a

workload distribution phase where the rows of the matrix
A are split up among the processes, and a computation

phase where values for the next iteration of the X vector
are found at each process and then collected together by a

master process (process 0), which then distributes X for
the next iteration.
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Figure 2: History displayed by p2d2 after pausing processes. Short vertical lines indicate where

the processes stopped. The user has chosen a concurrency point just after the second-to-last
send from process 0 to process I (denoted bythe arc on the right-hand side of the send event).

.The user opens p2d2 and pi'esses the RUN button, and,

once it is apparent that the processes are stuck ?n a,

running state, presses the PAUSE button to force p2d2 to
update the trace display. The trace display shows that the

processes never get past the distribution phase (see Figure
2), and that for some reason the number of rows of matrix

A being sent to each process, one row per message, is
smaller than expected.

See Figure 2 as well for the user-chosen concurrency

point, which is just _fter the second-to-last send operation
from process 0 to process 1. The user sets a stopline

breakpoint at the future frontier of the concurrency point.
After re-running, the execution stops just before the last
send operation from process 0 to process 1. At that point

the trace display verifies this (Figure 3), and the user is
able to discover in the main p2d2 window (Figure 4) that

Figure 3: History displayed after replay of execution. Process 0 has stopped just before its last
send to process 1, and likewise process 1 has stopped just before its last receive. Processes 2 and

3 have stopped just before receiving messages from process 0.
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-.- ==p_d": ma_Ki_e :=O_@r_tinE sws_em _=c _x_%abIe --state ....... location--

- ?or( g = O; y < matrixSize; y++)
- {
- tempRow[y] = C_matrix[x][g];
- }

_40- }

// master sends row o? matrix
___ HPl_Send(tempRow, matr_xSize_ HPI_DOUBLE, i, ×, comm);

- x++;
445- }

- }
- }
- else
- [

450- // slave processors receive rows o? matrices, regardless o? whether the

P/e, Ilnsotve.c

5howln# first stack frame for which there Is source rsee Help]

display process 19418937: stopped

_[ Display
_PIFMrPFIrHHII_/r_ r_r Fr1HIHPrrrl

_ZZZlZZ._ZZZ.HIIrH.,

o: in PMPI_Send w/ (?unknown?), line 55_ in 'send.c'

1: in HPI_Send w/ (Tunkno_n?), line 50, in 'instMPI.c
wlmi'l_a_i l;" _|

Figure 4: Stopping location of process 0 in the source code display of 0202. The loop count

is evaluated here to discover the programming error.

process 0 only sends each process half as many rows as it
should it reaches the end of its send loop too quickly

while the receiving processes perform the correct number
of receives. This discrepancy between sends and receives

results in all processes hanging. Adjusting the parameters
of the send loop of process 0 fixes the problem.

5 Implementation Experiences

In order to test our hypotheses about the suitability of
the compressible trace for debugging and about the

degree to which it can be compressed, we implemented a
trace collection mechanism to go with the trace viewer
described in section 3.

We implemented trace collection for MPI programs by

writing a set of wrappers using MPI's profiling interface.
In effect, each wrapper routine does three things:

it collects some preliminary trace information and,

for those MPI routines that send or receive messages,
creates a trace record to mark the beginning of that
send or receive;

• it calls the MPI routine it is wrapping; and

• it produces a trace record describing the completion
of the MPI routine.

Each record is counted during the computation. This
count is used as the timeline location marker. Each time

the counter is incremented during a replay, it is checked

against a threshold value to see if execution should be

stopped.
We implemented the viewer in p2d2, the distributed

debugger mentioned earlier. The viewer extracts trace

data from each process when it is interrupted, and then
reconstructs the additional execution history represented

by that data and displays it.
If the user creates a stopline in the trace, the viewer

calculates the record number for each process, using the
frontier calculation described in section 3.4. If execution

is restarted, the debugger writes those threshold values in

the newly started processes so that they will stop them-
selves at the appropriate time.

After implementing the wrapper routines and the trace
viewer, we tested our prototype on some MPI programs.

5.1 Issues discovered during implementation

The timestamps discussed in section 2.2 should reflect

the amount of CPU time used by the processes being
debugged (including time spent waiting). In a debugging

scenario the options for obtaining this time are limited by
the constraint that time spent at a breakpoint, or other

such debugging interruption, should not be counted as
execution time. One way to avoid this is to use system

calls that report execution time directly, typically as a
number of clock ticks.
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Our implementation on an SGI Origin 2000, running
IRIX 6.5, depended on the system call times(), which

returned clock ticks equal to 10 milliseconds of CPU
time. This large clock tick size led to problems in the

display of the execution history, because actual CPU time
for typical MPI routines is on the order of microseconds.

The logarithmic timestamp approximation thus reported a
time delta of at least 10 milliseconds for each trace

record, causing the reconstructed approximate absolute
time to become further and further ahead of actual

absolute time. This effect defeats the self-correcting

property of the logarithmic time deltas, and causes the

display to show messages as though they were traveling
backwards in time. The operations available for

interacting with the trace display are not affected, but the

display can be confusing for users.
In the absence of a system call reporting actual

execution time at a sufficiently fine granularity level we
resorted to calculations of wall clock time that were

corrected for time spent in states other than execution.
Two different methods to achieve this were implemented:

• the gdb processes track wall clock time only when
p2d2 instructs them to do so, and

• p2d2 tracks non-execution time in order to correct the

time deltas reported by the gdb processes.

Both methods r..esulted in a trace display that had few
:to n_ messages that appeared to be traveling backwards in

time, and was therefore much iess conf, ising than the
display resulting from use of the times() system call.
However these methods have drawbacks as well, the first

being a loss of accuracy caused by latency of messages
sent between p2d2 and the gdb processes. In the first
method the wall clock time that passes while the

instructive message is sent from p2d2 to the gdb pro-
cesses is incorrectly perceived as execution time. In the

second method p2d2 underestimates non-execution time
because it marks the beginning and end of breakpoints

just as it sends messages to the gdb processes to begin or
suspend execution, not when execution is actually begun

or stopped.
An additional drawback of the second method is

caused by the error-correcting timestamp approximations
described in section 2.2. P2d2 tracks the amount of time

spent in a non-execution state in order to subtract the
amount from the time delta of the first trace record that

occurs once a process begins executing again. Unfortu-

nately the extra wall clock time spent in a non-execution
state is often spread out over two or more trace records

due to the error-correcting method of time delta
calculation, and reconstructed timestamps for those trace

records may therefore be nonsensical (negative, or close

to zero). Consequently this method of wall clock correc-
tion requires that time deltas be calculated without the

error-correcting attribute.

5.2 Trace sizes

One of the chief goals of our implementation was to
see how small we could make the trace data and still have

it be a reasonable representation of the computation. See

Table 1 for sizes of trace data collected from running the
NAS Parallel Benchmark [11] programs SP and LU with

4000 and 2500 iterations, respectively, on 16 processes.

The test programs were run under the Automated
Instrumentation and Monitoring System (AIMS) [16], the
MPI extension of the Portable Instrumented Communica-

tion Library (MPICL) [10], and p2d2. AIMS uses a
source-to-source instrumentation method, while MPICL

is an instrumented communication library like the one we

have implemented. The resulting number of MPI events
was about 250,000 for SP, and from 635,000 to 1.2
million for LU. All numbers describe the summation of

trace data collected across all processes, averaged over 10
runs. Note that compression numbers for AIMS and

MPICL were obtained by compressing with gzip.

Of particular interest in these numbers is the degree to
which our new format can be compressed. Extrapolating
from the current results indicates that 220 million MPI

events could be stored in an 80 megabyte buffer in the

process's address space. However, this is a low estimate
because larger trace files facilitate better compression,
and indeed our la,_gest test to date confirms this with 50.8
million event,: ir, a i,'5 28 megabyte huffer (whict" scale,;

to 220 mil;ion events in a 70.5 megabyte buffer).

5.3 Limitations in the p2d2+MPl implementation

The choice of MPI as the library to use in target

programs leads to some limitations in the implementation
of trace viewing in p2d2. In general, these limitations are
due to MPI's broad functionality.

Missed messages: The MPI standard allows for non-
blocking communication, and each message sent in this
way must have an MPI_Request data structure allocated.

These structures can be freed using the _rPI_RE-
QUESTFREE call before a non-blocking message has

completed its transfer, leaving the actual status of the
message unknown to MPI and to our implementation. The

resulting behavior in the program being debugged may
indicate successful completion of the message transfer,

but the trace display will not show any such message.

Trace Trace Size in MBytes %
Source Type Before After Compression

p2d2 182.4 2.5 98.6
SP AIMS 237.4 36.5 84.6

MPICL 381.8 65.5 82.8

p2d2 724.7 4.6 99.3
LU AIMS 647.4 120.7 81.3

MPICL 900.6 141.7 84.3

Table 1: Trace Size Comparison
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Imperfect stopline frontiers: Ideally the frontiers
described in section 3.4 will contain events such that

every process involved in a debugging session can
suspend itself during replay--that is, no process will
block waiting for an event from a stopped process. This is

achieved in MPI if all outstanding message sends and

receives are completed before an attempt is made to
suspend. Otherwise the process remains in a running state

waiting for the send or receive to complete.
We discovered that ideal frontiers could always be

found with message passing programs that utilized just
one MPI communicator. Using more than one
communicator can lead to situations in which the ordering

of message sends is different than the ordering of message

receives (across all communicators), and results in

processes that are waiting for sends or receives to com-
plete at the time of the stopline. Further work is necessary

to alleviate this problem.
Imperfect rollback: In order to reverse execute just

one message event in the execution history it is often

necessary to leave processes in a state where a message
send or receive is incomplete. As described above this

leads to processes that remain in a running state, and
reduces the usefulness of the rollback feature in those

cases.

6 Related Work

Because the executior_ of message passing programs is
more complex than that of serial 'programs, more

powerful debugging techniques are required to isolate
errors. The increased complexity comes from:

• interprocess communications and synchronization,

• an increased number of steps to compute the same
result, and

• increased potential for nondeterministic behavior.

Several approaches for dealing with these sources of
complexity have been researched.

One approach that is common to several projects

provides a replay mechanism that makes it possible to use
the error isolation method of serial codes. Once a

deterministic execution, at least for debugging purposes,
can be guaranteed, the user is free to re-execute the code

in an attempt to zero in on the bug. In general, the replay
mechanisms collect trace information during an initial run

that records critical event ordering information. It then
orchestrates re-executions so that the event orderings are
honored.

The htstant Replay work of LeBlanc and Mellor-

Crummey [6] together with follow-up work on software
instruction counters [8] served as a conceptual foundation

for an integrated debugging and performance analysis
toolkit [7] for shared memory codes. The Pangaea [4]

project used logging information to enforce event

ordering during replay of PVM [ 15] programs.

There has also been work on minimizing the number

of trace records collected in order to guarantee event

ordering during replay. The Optimal tracing and replay
[12][13][14] work is applicable both for shared memory

and message passing codes.
One other approach of note for debugging parallel

programs is the behavioral approach used by Ariadne [ 1].
It provides a post-mortem facility for comparing actual

execution with a user-specified model of behavior.
An earlier paper from the p2d2 project described the

full integration of trace visualization and a replay
mechanism in a state-based debugger for message passing

programs [3]. It included features for consistent trace-

based stoplines and for a replay-based implementation of
UNDO. That work, however, did not solve the problems

inherent in the real-time display of the trace. It also made
no attempt to minimize the amount of trace data collected.

In the area of minimizing trace information, Yan and

Schmidt experimented with fixed-size trace files [17].
Their work is based on the observation that program

behavior follows patterns. The trace collection routines
attempt to represent repeated patterns during execution

with formulae containing repetition counts. The number
of time stamps in the trace is greatly reduced and as a
result, the trace that is reconstructed from the formulae

has interpolated time stamrs if,at may not be: accurate.
Furthermore, the fi_rmula_producing,.rnechanism i_ the
trace coliecfion ha:_ a limited co_ection of building blocks
from which to build patterns.

7 Conclusions & Future Work

The ability to see and interact with an abstract view of
the execution history of a message-passing program can
provide a significant benefit to debugging. For example, a

facility for displaying an anomalous message-passing

pattern and then stopping before it occurs during a re-
execution can simplify the job of isolating the bug that
causes it.

In this work we have described the implementation of
a practical mechanism for collecting and displaying trace

information during a debugging session. Our approach
solves the problems of displaying up-to-date trace infor-
mation. It also introduces a trace format that is highly

compressible while still providing information adequate

for debugging purposes. We make the mechanism con-
venient for users to access by incorporating the trace

collection in a set of wrappers for the MPI communica-

tion library.
There are several debugger operations that use the

trace display: consistent stoplines, undo, and rollback.

They are all implemented using a controlled replay
mechanism that executes without debugger interpretation

in target processes until the appropriate position in the
timeline is reached. The replay technique permits
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execution at virtually the same speed as uninstrumented

code.

In the future, we want to experiment with different

approximation schemes for the time stamp deltas that

appear in trace records. We would also like to see how

additional information, such as program source location,

can be added to the trace records without sacrificing

compressibility. We will also experiment with different

skewing techniques in an attempt to minimize the number

of messages that appear to go backwards in time.
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